Cross-lingual Dependency Parsing Based on Distributed Representations

نویسندگان

  • Jiang Guo
  • Wanxiang Che
  • David Yarowsky
  • Haifeng Wang
  • Ting Liu
چکیده

This paper investigates the problem of cross-lingual dependency parsing, aiming at inducing dependency parsers for low-resource languages while using only training data from a resource-rich language (e.g. English). Existing approaches typically don’t include lexical features, which are not transferable across languages. In this paper, we bridge the lexical feature gap by using distributed feature representations and their composition. We provide two algorithms for inducing cross-lingual distributed representations of words, which map vocabularies from two different languages into a common vector space. Consequently, both lexical features and non-lexical features can be used in our model for cross-lingual transfer. Furthermore, our framework is able to incorporate additional useful features such as cross-lingual word clusters. Our combined contributions achieve an average relative error reduction of 10.9% in labeled attachment score as compared with the delexicalized parser, trained on English universal treebank and transferred to three other languages. It also significantly outperforms McDonald et al. (2013) augmented with projected cluster features on identical data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annotation Projection-based Representation Learning for Cross-lingual Dependency Parsing

Cross-lingual dependency parsing aims to train a dependency parser for an annotation-scarce target language by exploiting annotated training data from an annotation-rich source language, which is of great importance in the field of natural language processing. In this paper, we propose to address cross-lingual dependency parsing by inducing latent crosslingual data representations via matrix co...

متن کامل

Distributed Word Representation Learning for Cross-Lingual Dependency Parsing

This paper proposes to learn languageindependent word representations to address cross-lingual dependency parsing, which aims to predict the dependency parsing trees for sentences in the target language by training a dependency parser with labeled sentences from a source language. We first combine all sentences from both languages to induce real-valued distributed representation of words under ...

متن کامل

A Distributed Representation-Based Framework for Cross-Lingual Transfer Parsing

This paper investigates the problem of cross-lingual transfer parsing, aiming at inducing dependency parsers for low-resource languages while using only training data from a resource-rich language (e.g., English). Existing model transfer approaches typically don’t include lexical features, which are not transferable across languages. In this paper, we bridge the lexical feature gap by using dis...

متن کامل

Dependency Parsing of Code-Switching Data with Cross-Lingual Feature Representations

This paper describes the test of a dependency parsing method which is based on bidirectional LSTM feature representations and multilingual word embedding, and evaluates the results on monoand multilingual data. The results are similar in all cases, with a slightly better results achieved using multilingual data. The languages under investigation are Komi-Zyrian and Russian. Examination of the r...

متن کامل

Cross-Lingual Dependency Parsing with Late Decoding for Truly Low-Resource Languages

In cross-lingual dependency annotation projection, information is often lost during transfer because of early decoding. We present an end-to-end graph-based neural network dependency parser that can be trained to reproduce matrices of edge scores, which can be directly projected across word alignments. We show that our approach to cross-lingual dependency parsing is not only simpler, but also a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015